Fabrication of organic near-infrared photodetectors by coating techniques

^{+§}Marta Sanz-Lleó, ⁺Mariano Campoy-Quiles, [§]Laura López-Mir

⁺Institut de Ciència de Materials de Barcelona, UAB Campus, 08193 Bellaterra, Spain

[§]Eurecat, Centre Tecnològic de Catalunya, Unitat d'Impressió Funcional i Dispositius Encastats, Av.Ernest Lluch 36, 08302 Mataró, Spain

Organic based **near-infrared photodetectors** offer the potential advantages of being flexible, light-weight and low cost. These types of photodetectors can be made by **solution processing** techniques, such as a **blade coating** (at lab scale) and slot-die coating (when upscaling).

The **photophysical and optoelectronic properties** of organic photodetectors can be broadly **adjusted** by means of **organic chemistry**. The molecular design strategy is based on donor-acceptor (D:A) bulk heterojunction concept. This concept combine **polymers** and the currently emerging **small molecular** acceptors, namely **non-fullerene acceptors (NFA)**. This work focus on studying of **performance and stability after 5 months** of photodetectors based on a **polymeric donor (P3HT or PBDBT-2F or PTQ10)** blended with one **NFA (o-IDTBR or ITIC-4F or IDIC or Y-family)**. In particular, we use high throughput

Scheme 1. (a)Chemical structure of polymer donors P3HT, PBDB-T-2F and PTQ10; (b) Chemical structures of Non-fullerene acceptors o-IDTBR, ITIC-4F, IDIC & Y-family (Y6, Y12)

Scheme 2. Schematic structure of organic photodetector in inverted geometry

Scheme 3. Energy-level diagram showing the HOMO and LUMO energies of each material

Organic photodetectors by Blade coating

Image: Sector of the sector

Scheme 4. Pixeled substrate with gradient of photoactive material by blade coating technique

Table 1. Conditions of Blade coating for each material

Materials	Concentration	Solvent	Blade speed (mm/s)	W (µm)	Hot plate (°C)	Anneling (°C, min)
ZnO (ETL)	2.5 wt %	IPA	5	150,1000	40	100,10
Donor:Acceptor (PAL)	20 mg/ml (1:1.5)	СВ	90-10	200,1000	88	100,10

IPA: Isopropanol CB: Chlorobenzene

Blade coater equipment

Scheme 5. Pixeled substrate with a thickness gradient of photoactive material

Results

- * Screening of photoactive materials in devices
 - Studying of performance and stability after 5 months

Scheme 6. (a) Efficiency vs blade speed for each system under study (b) EQE measurements of P3HT:o-IDTBR, PBDBT-2F:ITIC-4F, PTQ10:IDIC and PTQ10:Y6

Scheme 7. (a) Thickness dependence of device performance on the PTQ10:IDIC, Y6 & Y12. (b) Dark current @ -2V for each system.

Thickness dependence of device performance in PTQ10: IDIC & Y-Family

Conclusions

- 1. High % PCE values were obtained with fast Blade speed +----> Large thickness of active layer in all systems
- 2. The highest PCE were found for PTQ10 and different NFA
- 3. After 5 months stored in nitrogen, the devices were only degraded mildly
- 4. EQE values above 50% were measured for PBDB-T-2F:ITIC-4F, PTQ10:IDIC, and PTQ10:Y6 systems
- 5. The lowest dark current obtained was 10-3 mA/cm2 (@ -2V) in PTQ10:IDIC system

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 862492

